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1 - Introduction:
This report will focus on the solution of a linear elastic planar indentation problem making use of finite
element analysis methods. The problem in question will involve a punch made of an ideal material with
infinite rigidity. This punch will provide a means to transfer a punch force to the main material which will
deform under the punch force.

This problem will be solved using both Python and Matlab programs which will be validated using
Abaqus as well as solid mechanics theory. The purpose of the validation with Abaqus is to obtain a first
order validation to ensure the model is providing acceptable values before a final validation with the
theory.

2 - Methods:
The analysis of the prescribed displacement punch problem was performed in two different programs.
The first was a Matlab code adapted to include prescribed displacements. This code was then ported to
Python to take advantage of memory saving techniques for refined meshes. The Python code was run
with the same problem conditions as the Matlab code and the stiffness matrices were compared and
found to be identical. Following this all analysis was conducted in Python as it was able to run faster
due to memory saving methods used. The units being used for this analysis will be the S.I. base units
(“SI Units,” 2010).
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2.1 - Problem Definition:
The problem will be dimensioned using SI units as defined above. To make the problem a
representative size it will be dimensioned to be roughly the size of an object that could be tested in a
shop scale hydraulic press. The radius (R) and height (H) of the sample will be taken to be equal while
the punch radius (a) will be taken to be 20 times smaller than R. The dimensions of the sample are
summarized below (Figure 1)(Table 1).

Figure 1. Overall sample geometry as well as symmetric geometry used for this analysis.

Table 1. Summary of parameters used for this analysis.

Name Value Units Name Value Units

Elastic Modulus 70E+09 [Pa] [kg⋅m-1⋅s-2] R 1.5E-01 [m]

Poisson's Ratio 0.3 [N.a.] H 1.5E-01 [m]

Punch Displacement (𝛿) -1.0E-05 [m] a 7.5E-03 [m]
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2.2 - Boundary Conditions:
The problem will be simplified to a single body system by replacing the punch with prescribed
displacements on the nodes it would normally be contacting. Additionally these nodes will only be
allowed to displace in the vertical direction as a no slip (or rough friction) condition will be applied on the
punch contact area (Figure 1).

The size of the system will also be reduced by taking a symmetry condition along the center of the
punch. This condition will be enforced by only allowing vertical displacement for these nodes ensuring
they do not separate from the center line (Figure 1).

Finally a fixed condition will be applied to the base of the sample describing a support below the sample
during the compression test with the punch (Figure 1). These boundary conditions are described below
in terms of horizontal (u) and vertical (v) displacements (Table 2).

Table 2. Summary of boundary conditions used in this analysis.

Boundary Condition u [m] v [m]

Punch 0 𝛿

Symmetry 0 Free

Fixed Base 0 0

2.3 - Elements and Mesh:
The elements used in this analysis were quadrilateral bilinear elements. Quadrilateral elements were
selected because of the rectangular shape of the sample meaning they could easily be meshed in the
sample geometry. Bilinear elements were chosen for the first round of analysis due to their simplicity.
For the full analysis a total of 150 elements was chosen due to its balance between runtime and
refinement around the punch area. The 150 element mesh had a total of 8 nodes on the surface directly
contacting the punch area. The number of elements here matters a great deal since linear elements
were used so the number of elements in the area around the punch essentially determines the
accuracy of the interpolation between element values.

Additional mesh refinement on Abaqus was performed to determine if further refinement of the 150x150
element mesh around the punch location provided any different results.
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3 - Results:
By plotting the strain values we observe normal results where the strain at the top left of the figures (Figs. 2.a-2.b) show essentially
zero strain in the X-X direction. This is because these nodes are fixed in the X or u direction. Directly to the right of these elements
we see the peak in the X-X strain where elements to the right of the punch are pulled in and down from the punches prescribed
displacement. Indeed this is where the peak is observed for both X-X and Y-Y strain. As such we expect this area to have a very high
strain due to Hooke's law, the governing equation behind this FEM analysis.

(a) (b)

Figure 2. Strain for 150 element mesh with no slip condition on showing X-X (a) and Y-Y (b) strain fields zoomed into the top left
area where the punch is acting. Full images are shown in appendix 6.1 (Appendix 6.1).
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This is also what is observed in our X-X and Y-Y stress fields showing the relevant area of the sample around the punch (Figs.
3.a-3.b). Unsurprisingly the stress fields share very similar qualitative features as the strain fields. It should be noted that the max
stresses observed are on the order of 107 Pa while the modulus of elasticity specified for this analysis is on the order of 1010 (Table
1). This means that the linear elasticity assumption used in this analysis is well within the acceptable range.

The stress fields show that the X-X stress reaches values close to zero much faster than the Y-Y stress in the axial or Y direction of
the sample. Additionally the X-X stress is mostly confined to a small area where the material around the punch was drawn in the
radial or X direction. This makes sense as the applied force (result of the prescribed displacement) is applied in the axial direction so
most of the stress from this load is described by the Y-Y stress.

(a) (b)

Figure 3. Stress for 150 element mesh with no slip condition on showing X-X (a) and Y-Y (b) stress fields zoomed into the top left
area where the punch is acting. Full images are shown in appendix 6.1 (Appendix 6.1).
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4 - Validation and Limitations:

4.1 - Validation with Abaqus
Initial validation with Abaqus showed very good quantitative agreement with the displacement
and stress values reported by the model used in this analysis (< 15% max error)(Table 3). The
setup with Abaqus was identical to what was used in this analysis with the same geometry and
material parameters as described in table 1 as well as the same boundary conditions described
in table 2 (Figure 4).

Figure 4. Boundary conditions for Abaqus model.

The Abaqus model was solved using the “Static, General” solver with plane strain linear
quadrilateral dominated mesh elements. Sufficient mesh refinement was used to achieve 8
nodes on the punch surface (the same as in the Python analysis) to provide adequate fidelity in
the interpolated results.
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4.1.1 - Mesh Refinement:
Mesh refinement with Abaqus (Fig. 5) was used to determine if the simple 150x150 element
mesh was capturing all the information required to solve this problem. By using more elements
around the punch area better interpolation was achieved, however only a 6% difference was
observed between the 150x150 mesh and refined mesh results from Abaqus. As such this
added fidelity wasn’t deemed necessary for the Python analysis being done.

Figure 5. Refined mesh biased toward the punch location (top left).
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4.2 - Validation with Theory
Validation with theory allows us to compare the displacement (Eqs. 1-2) and pressure (Eq. 3)
curves for the theoretical equivalent of the problem. The constants F2 and D2 were found by
ensuring the vertical displacement was equal to 𝛿 inside the punch radius and the vertical
displacement was zero at the outer edge of the sample (R).The most common solution to this
kind of problem makes use of complex stress functions (Bower, 2009; EN224: LINEAR
ELASTICITY, n.d.; Johnson, 1985). This solution makes the assumption that the punch is
lubricated or frictionless. Due to this there is a difference in the boundary conditions between the
problem being solved in this analysis and the validating equations used. This difference can be
attributed to some of the difference between theoretical results and the initial computationally
calculated results (Table 3).

𝑣(𝑟) =
−𝐹

2
(1−υ)

π𝐺 𝑙𝑜𝑔(𝑎) + 𝑑
2
 𝑓𝑜𝑟 𝑟 < 𝑎 Equation 1

𝑣(𝑟) =
−𝐹

2
(1−υ)

π𝐺 𝑙𝑜𝑔(𝑟 + 𝑟2 − 𝑎2) + 𝑑
2
 𝑓𝑜𝑟 𝑟 > 𝑎 Equation 2

𝑃(𝑟) =
𝐹

2

π 𝑎2−𝑟2
 𝑓𝑜𝑟 𝑟 < 𝑎  𝑤ℎ𝑒𝑟𝑒 𝐹

2
 𝑖𝑠 𝑓𝑜𝑢𝑛𝑑 𝑡𝑜 𝑔𝑖𝑣𝑒 𝑣(𝑟) = δ 𝑓𝑜𝑟 𝑟 <  𝑎 Equation 3

Table 3. Validation data between Python model and Abaqus/theoretical results.

Validation
Parameter

Abaqus Error Theoretical Error

Max [%] Average [%] Max [%] Average [%]

Vertical
Displacement 13.38 3.91 34.17 24.73

Vertical Stress 12.15 9.47 34.92 24.88

The error with Abaqus was quite small and was mainly attributed to differences in the mesh. The
errors listed above were obtained using the refined Abaqus mesh which showed the largest
difference due to mismatched positions in the comparison. Exact mesh matching yielded smaller
max error for Abaqus with 10 and 6 % for max displacement and stress error respectively (~2%
average error for both parameters).

The error with the theory was around double that of the Abaqus validation error. As mentioned
above the difference is likely due to the fact that the frictionless punch allows points to move and
slip out from under the punch. To try and obtain more accurate and representative validation a
different theoretical set of equations was used. These equations were obtained from the solution
to the flat punch problem where the punch is perfectly bonded to the sample material (no
slip)(Adams, 2016). The solution is not quite as straightforward and requires some integrals to
be computed to obtain the required results (Appendix 6.2).
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Taking the normal condition where T is zero the theoretical results for no slip  were compared to
the frictionless punch results (Bower, 2009) by varying values of P to achieve the desired 𝛿.
Finally the difference between the two stress values was obtained to determine the effect the no
slip condition had on the Python and Abaqus analysis. The two curves for Y-Y stress matched
very closely but slowly diverged towards the corner of the punch (Fig. 6). This indicates that the
main effect of the no slip condition is on the points that are forced to remain fixed at the corner
of the punch. Overall this error was relatively small with a maximum value of 20% towards the
corner of the punch.

Figure 6. Percent error between slip and no slip theory equations for Y-Y stress.
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4.3 - Overall Validation
The validation methods explored yielded promising results. The Abaqus validation matched the
closest with the findings found from analysis with the Python based FEM code (Figs. 7-8). The
main difference between the Python and Abaqus results are the methods used to calculate the
values as well as the location the stress is evaluated at. For the Python code the stress is
evaluated at the centroid while in Abaqus it is evaluated on the top surface. Despite this the
error is quite acceptable (~13% max error) indicating the Python code is solving the problem
correctly. Validation with theory was trickier since there are multiple differences in the way the
problem is solved when using theoretical equations. In general the validation was quite good
with maximum errors of ~30%, 20% of which can be partially attributed to the slip versus no slip
condition. The rest of the error is likely due to the imperfect refinement of the mesh used (~6%
error) as well as the difference in centroid areas for the stress comparison.

Figure 7. Comparison of the Y-Y stress distribution along the top elements for the Python based
FEM analysis as well as the two validation methods.
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Figure 8. Full field view of the deformed shape of the Python based FEM analysis. Overlaid on
the plot are the two validation method curves for the deformation of the top of the sample

surface. All plotted deformations have the same scale factor applied.

12



5 - References:
Adams, G. G. (2016). Frictional slip of a rigid punch on an elastic half-plane. Proceedings of the

Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2191),

20160352. https://doi.org/10.1098/rspa.2016.0352

Bower, A. F. (2009). Applied Mechanics of Solids. CRC Press.

https://doi.org/10.1201/9781439802489

EN224: LINEAR ELASTICITY. (n.d.). Retrieved November 25, 2022, from

https://www.brown.edu/Departments/Engineering/Courses/EN224/axicontact/axicontact.

html

Johnson, K. L. (1985). Contact Mechanics. Cambridge University Press.

https://doi.org/10.1017/CBO9781139171731

SI Units. (2010). NIST. https://www.nist.gov/pml/owm/metric-si/si-units

13



6 - Appendices:

6.1 - Supplemental Images
Additional images have been generated using a mesh of 50x50 elements for clearer
visualization of the mesh. All images can be downloaded from the following Git repository: LINK

6.2 - Source Code
Python and Matlab source code can be downloaded from the following Git repository: LINK

6.3 - Abaqus Model
The Abaqus model used for validation can downloaded from the following Git repository: LINK

6.4 - Perfectly Bonded Punch Analysis
The analysis of the perfectly bonded punch analysis (Adams, 2016) is much more complex than
the complex stress analysis performed for the frictionless punch. The initial equation for this
method are the integral form of the displacement components ( ),𝑢,  𝑣

𝑑𝑢
𝑑𝑥 =− 𝐵

4π 𝑝(𝑥) − 𝐴
4π

−𝑎

𝑎

∫ 𝑞(ξ)
𝑥−ξ 𝑑ξ Equation A.1

𝑑𝑣
𝑑𝑥 = 𝐴

4π
−𝑎

𝑎

∫ 𝑝(ξ)
𝑥−ξ 𝑑ξ − 𝐵

4π 𝑞(𝑥) Equation A.2

where and are constants (Eqs. A.3-A.4) and and are the normal and shear tractions𝐴 𝐵 𝑝 𝑞
respectively.

𝐴 = 4 (1−υ)
𝐺 Equation A.3 𝐵 = 2 (1−2υ)

𝐺 Equation A.4

These equations are solved using a complex function allowing the calculation of and (Eqs.𝑝 𝑞
A.5-A.6).

𝑝(𝑥) = 𝐶| |

𝑎2−𝑥2
𝑐𝑜𝑠(ε · 𝑙𝑛( 𝑎+𝑥

𝑧−𝑥 ) + φ) Equation A.5

𝑞(𝑥) = 𝐶| |

𝑎2−𝑥2
𝑠𝑖𝑛(ε · 𝑙𝑛( 𝑎+𝑥

𝑧−𝑥 ) + φ) Equation A.6

𝐶 = 𝐶| |𝑒𝑖φ  𝑤ℎ𝑒𝑟𝑒  𝐶| | = 𝑐𝑜𝑠ℎ(πε)
π 𝑃2 + 𝑇2 Equation A.7

φ = 𝑡𝑎𝑛−1( 𝑇
𝑃 )  𝑓𝑜𝑟 −π

2 < φ < π
2 Equation A.8
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